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Abstract

Purpose – To provide an eddy-viscosity turbulence model that accounts for the non-equilibrium
shape of the energy spectrum and for the effect of velocity correlation on turbulent viscosity.

Design/methodology/approach – The turbulence model is built using the standard k1 model as the
starting point. It is suggested that the character of turbulence depends on the time elapsed since its
generation. Therefore, a local variable named “age of turbulence” ora, is defined and its transport equation
is derived. Two hypotheses are formulated. The first one is that the shape of the energy spectrum depends
ona. The second one is that also the effect of velocity correlation on turbulent viscosity is a function ofa, in
analogy with the dispersion coefficient of a particle in a turbulent flow. Hence, expressions for the
characteristic time scaletT and the turbulent viscosity nT are proposed and they are integrated in the
standard k1 model, resulting in a three equation model named here k1a. The expressions of nT and tT

reduce to those of the k1 model in decaying turbulence, and deviate from them in recently produced
turbulence. The empirical constants are calibrated and various benchmark experiments are simulated.

Findings – A comparison between computed results and experimental data show that the k1a model
is generally more accurate than the standard k1 model.

Originality/value – The “age of turbulence” has not been used previously to characterise
turbulence. The work is especially relevant for combustion/reacting applications, where the expression
of the characteristic turbulence time scale is crucial for the estimation of the reactant mixing rates.

Keywords Turbulence, Shearing, Jets, Diffusion

Paper type Research paper

Nomenclature
C ¼ empirical constant
d ¼ nozzle diameter
D ¼ diffusivity
E ¼ power spectra
f ¼ empirical function
G ¼ production of k
H ¼ step height
k ¼ turbulent kinetic energy
l ¼ length scale
m ¼ decay exponent
n ¼ integer constant
s ¼ auxiliary variable (time)
S ¼ strain rate tensor
Sc ¼ turbulent Schmidt number
t ¼ time
u, v, w ¼ velocities
U ¼ mean velocity
x ¼ coordinate
X ¼ mass fraction of a chemical species

Y ¼ distance from wall
Z ¼ generic transported scalar
a ¼ age of the turbulence (or of a scalar)
1 ¼ turbulence dissipation rate
l ¼ auxiliary function
k ¼ VonKarman constant
n ¼ kinematic viscosity
f ¼ generic variable
s ¼ empirical constant
t ¼ time scale
v ¼ specific dissipation rate,

frequency

Subscripts
0 ¼ initial
A ¼ chemical species A
i ¼ integer index
j ¼ integer index
T ¼ turbulent

Further, explanation of the symbols is given in the text.
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Introduction
Linear two-equation models of turbulence are popular due to their robustness, and
have been developed extensively. Since, it is known, however, that these models suffer
certain shortcomings, a number of more advanced approaches have been developed, as
for example nonlinear eddy-viscosity models, multi-scale models, Reynolds-stress
models and large-eddy simulation (LES).

Two-equation models are based on the intrinsic assumption that two variables are
sufficient to estimate the characteristic (integral) scales of turbulent motion. In fact, for
given values of the two transported variables, typically k and 1 characteristic time and
length scales are derived from the theory of Kolmogorov. The hypotheses of
Kolmogorov, however, are valid for small scale turbulent motion only (the inertial
range), while the characteristic scales of turbulence lay in the energy containing range.

Multi-scale models of turbulence are based on the idea that the shape of the energy
spectrum is decisive and that more than two variables can be used to describe it better.
Such models can be found for example in Hanjalic et al. (1980), Kim and Chen (1989)
and Rubinstein (2000).

Also nonlinear eddy-viscosity models and Reynolds-stress models are often more
accurate than linear eddy-viscosity models. These models, however, are based on other
considerations than multi-scale models, and usually they are not focussed on the shape
the spectrum.

Alternatively, the large-scale motions can be computed by means of LES, but LES is
computationally expensive. In fact, many of the calculations in the industrial sector are
still performed by means of two-equation eddy-viscosity models.

In the present work, a transport equation is formulated and it is added to those of
the standard k1 model resulting in a new three-equation model of turbulence. The
information from the additional equation is used to provide a more accurate estimation
of the turbulent viscosity, based on considerations on the evolution of the spectrum, as
it is done in multi-scale models. The additional equation in the present model,
however, is completely different from those in multi-scale models, and does not require
modelling of the source terms.

The k1 model: expression of the turbulent viscosity
According to the cascade representation of turbulence, turbulent energy is produced at
the large-scales (energy containing range), it is transported through the inertial
sub-range, and it is dissipated in the dissipation range. The theory of Kolmogorov
provides a universal description of the vortex structure in the inertial subrange in the
form of relations between length, time and velocity scales:

uðlÞ / ð1lÞ1=3 ð1Þ

tðlÞ / l2=312ð1=3Þ ð2Þ

where l are the length scales, u are the velocity scales, t the time scales, and 1 the
turbulent energy dissipation rate. The validity of these relations is often extended to
the larger scales of turbulence, as, for example, in the k1models. An important
question is then: to what extent are these relations valid outside the inertial
subrange?
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In the k1 model of Launder and Spalding (1974), also known as standard k1 the
expression for the turbulent viscosity is based on the analogy with the expression for
molecular viscosity according to kinetic theory of gases:

n/ lfree pathumolecular ð3Þ

wheren is the molecular viscosity, lfree path the mean free path of a molecule, and
umolecular the molecular velocity due to temperature.

By analogy the turbulent viscosity can be written:

nT / lTuT ð4Þ

where the subscript T refers to characteristic turbulent quantities. This analogy was
first used by Prandtl to formulate the mixing length hypothesis. The physical meaning
of the characteristic length scale of turbulence lT has not been defined rigorously
(Pope, 2000), but it is reasonable to expect that lT should be comparable to the integral
length scales. The same can be said about characteristic time scaletT. The
characteristic velocity scale of turbulence uT is:

uT ¼ u‘2 þ v‘2 þ w‘2
� �1=2

¼ ð2kÞ1=2 ð5Þ

where u0 v0 and w0 are the fluctuating components of velocity in the Reynolds (or Favre)
averaging, and k is the turbulent kinetic energy.

In the k1model, transport equations are solved for the two variables k and1 which
are used to characterise the turbulence. The turbulent viscosity is then computed by
substituting equations (1) and (5) into equation (4):

nT / k 2=1 ð6Þ

The k1model: relations between the turbulent variables
The relations between the turbulent variables k, 1tT, lT, nT for given k and1 are fixed
when three independent relations are defined. In the k-1model the three relations are
equations (1), (2) and (4). Some of the resulting relations are summarized in Table I.

The question about the validity of equations (1) and (2) outside the inertial
subrange, then, could be reformulated as follows: are two variables sufficient to
characterize the turbulence? Could the model be improved by introducing new
independent variables?

First hypothesis: considerations about the spectrum
In experiments where turbulence is generated by means of a grid, the larger generation
of turbulence takes place in the zone directly following the grid. Near the grid,

nT 1 tT lT

nT ¼ cmk 2121 / tTk / lTk2ð1=2Þ

1 ¼ cmk 2n21
T / kt21 / k 3=2l21

T
tT / k21nT / k121 / lTk2ð1=2Þ

lT / k2ð1=2ÞnT / k 3=2121 / tTk 1=2

Table I.
Relations between the
turbulent variables in the
k1 model

HFF
17,2

142



turbulence is strongly anisotropic and non-homogeneous, while at larger distances,
where it decays, turbulence is more homogeneous and isotropic. It seems therefore that
the whole turbulent motion, after its generation, develops towards a homogeneous and
isotropic state (which resembles the inertial subrange described by Kolmogorov in his
hypotheses). At the early stage of turbulence, i.e. near the grid, one would therefore
expect that the inertial range is relatively narrow, and that it becomes larger as
turbulence develops, including a broader part of the energy spectrum. At the
early stage of turbulence, furthermore, the relations between the characteristic
scales should deviate more significantly from equations (1) and (2), which are
derived from the hypotheses of homogeneity and isotropicity. According to this
analysis, the wake behind the grid could be imagined to shift from an early stage to a
late stage:

. in the early stage dissipation is smaller than generation and turbulence is highly
anisotropic and non-homogeneous, and it is characterised by a relatively narrow
inertial subrange; and

. in the late stage dissipation is larger than generation and turbulence is almost
isotropic and homogeneous, and the inertial subrange is broader.

One could then say that turbulence undergoes an ageing process, where “old”
turbulence is characterized by a broader inertial subrange than “fresh” turbulence.

Going back to the question whether k and1 are sufficient to characterize the
turbulence, it could be reformulated as follows: could two different turbulent spectra
share the same turbulent energy and dissipation rate? In Figure 1, two hypothetical
energy spectra are shown that have the same k and1 but different integral time scale
(the same reasoning can be repeated for the length scales).

Consistent with the argument on ageing of turbulence, spectrum E1(v) could
characterise an “older” turbulence than that of spectrum E2(v). The “age” of the
turbulence could then be a useful parameter for characterizing the scales.

Figure 1.
Two different energy
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The a-equation
Ghirelli and Leckner (2004) showed how the residence time of a reacting species in a
flow can be computed by means of transport equations. In a constant-density turbulent
flow where molecular diffusion is negligible compared to turbulent diffusion, the
transport equation for a chemically reacting species A can be written:

DXA

Dt
¼

›

›xi

DT
›XA

›xi

� �
þ sP 2 sC ð7Þ

where XA is the mass fraction of the species, DT is the turbulent diffusivity, sp is the
source term due to reactions that produce A and sc is the sink term due to reactions that
consume A.

The local residence time (or age) of A can be computed by means of a transport
equation, which is written (Ghirelli and Leckner, 2004):

DðXAaAÞ

Dt
¼

›

›xi

DT
›ðXAaAÞ

›xi

� �
þ XA 2 aAsC ð8Þ

where aA is the age of A.
The turbulent energy k, as the mass fraction of a species in a reacting flow, is a scalar

which is produced, transported and consumed within the flow. This mathematical
similarity is clear if equation (7) is compared with the transport equation of k that is
used in several models, including the standard k1:

Dk

Dt
¼

›

›xi

Dk
›k

›xi

� �
þ G 2 1 ð9Þ

In this equation, Dk is the effective diffusivity of k, G is its production term and1 its
dissipation. Starting from equation (9) and repeating the derivation of equation (8), it is
possible to obtain an analogous transport equation for the local residence time of the
turbulent energy ak (or, more briefly, age of the turbulence a). The equation is written,
in a constant density flow:

DðkaÞ

Dt
¼

›

›xi

Dk
›ðkaÞ

›xi

� �
þ k 2 a1 ð10Þ

The derivation of equations (8) and (10) is presented in the Appendix.

Second hypothesis: dispersion analogy
The turbulent dispersion of a fluid particle injected from a point source into a
homogeneously turbulent flow can be modelled by a turbulent diffusivity DT that
depends on the time t elapsed since the injection of the particle as follows (Pope, 2000):

DTðtÞ ¼ u‘2
Z t

0

rðsÞds ð11Þ

where r(s) is the Lagrangian velocity autocorrelation function, which, according to the
Langevin model and to experimental data (Pope, 2000), can be expressed as:
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rðsÞ ;
uðtÞuðt þ sÞh i

u 2ðtÞ
� � ¼ exp 2

s

tT

� �
ð12Þ

Substituting equations (5) and (12) in (11) one gets:

DTðtÞ ¼
2

3
ktT 1 2 exp 2

t

tT

� �� �
ð13Þ

Equation (13) shows that the dispersion of a fluid particle in a turbulent flow can be
modelled by means of a diffusivity that is nearly constant for large relative residence
times t/tT, and that is nearly proportional to t for small t/tT. Turbulent diffusion as
expressed by equation (13) is smaller at short residence times than at large residence
times because the turbulent velocities are correlated within small time intervals. After
a sufficiently large residence time, the correlation is sufficiently small to be neglected.
The exponential term in equation (13) is therefore referred to as the “effect of
correlation”.

It is reasonable to assume that the loss of correlation of the turbulent velocity
(energy) with its age is analogous to the loss of correlation of the velocity of a
Lagrangian particle with time.

On the basis of the above assumption, considering that DT ¼ nT/ScT (ScT is the
turbulent Schmidt number) the expression for the turbulent viscosity is written:

nT ¼
2

3
ScTktT 1 2 exp 2ca

a

tT

� �� �
ð14Þ

where ca is a corrective constant. If the relation k/l2/tT
2 (from in Table I) is still taken

to be valid, then the expression of nT in equation (14) tends to the expression in
equation (4) for large relative ages a/tT. The expression for the turbulent viscosity
in equation (4) could be therefore dropped in favour of the one in equation (14), which
accounts for the correlation of turbulent velocities.

The exponential term in equation (14) is named the “model effect of correlation” or g:

g ; exp 2ca
a

tT

� �
ð15Þ

Clearly, g varies between 0 and 1 and it decreases as a/tT grows. The constant ca is
introduced in equation (14) for the reason explained in the following.

Turbulence at a point in the domain is a superposition of fluctuations that have been
generated at various locations upstream of the point. Therefore, the turbulence at a
point has been produced during an interval of time rather than at one discrete time. In
fact, the value computed by equation (10) is an energy-weighted average of the age of
turbulence, as it is seen in the Appendix. Let us consider, for example, the distribution
of a generic variable on the frequency domain f(v). Its energy average is defined as:

fh i ¼
1

k

Z 1

0

EðvÞfðvÞdv: ð16Þ

The age of turbulence as a function of the frequency a(v) should be an increasing
function of v because in the energy cascade the energy flows from the large-scales to
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the small ones. Even though a(v) is not known, it is clear that the average effect of the
correlation and the effect of correlation of the average age ,a . differ:

exp 2
aðvÞ

tT

� �� �
– exp 2

aðvÞh i

tT

� �
ð17Þ

In fact the left hand side of equation (17) is generally larger than its right hand side. In
the expression of the turbulent viscosity, it is the average effect of correlation that
should be accounted for, rather than the right hand side of equation (17), but there is
not enough information to compute the left hand side (neither a(v) or E(v) are known),
and therefore it is approximated according to equation (15), that is, with a model effect
of correlation. The empirical constant ca is calibrated to give good agreement with
experimental results.

Characteristic scale function
According to the reasoning about the ageing of turbulence, for a given k and a given 1
the characteristic scales tT and lT should decrease with a (Figure 1). Additionally,
according to the cascade representation of turbulence, energy is mainly transferred
from larger to smaller scales. This also seems to support the hypothesis that for given
values of k and 1 the scales should decrease with a (or with the relative age a/tT). It is
therefore reasonable to assume that, in analogy with the relation tT/k/1 in Table I, the
characteristic time scale in the k1a model can be written as:

tT ¼ ct
k

1
f

a

tT

� �
ð18Þ

where f is a decreasing function of a/tT and ct is an empirical constant. Not much else
is known about the function f; its expression is therefore determined by trial and error
in the following simulations of benchmark flows. The following expression for f has
given the best results:

f ¼
1 2 gn

1 2 g
¼
Xn21

i¼0
g i ð19Þ

Introducing equations (18) and (19) into equation (15), it follows that:

g ¼ exp 2
caa1

ctk
Pn21

i¼0 g
i

 !
ð20Þ

For a given set of k, 1 and a solving numerically equation (20) gives g.

The k1a model: relations between the turbulent variables
As for the k1a model, in the k1a model the relations between the turbulent variables k,
1, a, tT, lT, nT for given k, 1 and a are fixed when three independent relations are
defined. The first and second relations are equations (14) and (18). The third relation is
taken to be k/lT

2 /tT
2 , which is the last expression in the last row of Table I. Some

resulting relations between the turbulent variables in the k1a model are reported in
Table II.
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Þ
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1
f

/
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3=
2
l
2

1
T

f
t T

¼
ð3
=

2Þ
S

c T
k
2

1
n

T
ð1

2
g
Þ2

1
¼

c t
k1

2
1
f

/
l

T
k
2
ð1
=

2Þ

l
T

/
k
2
ð1
=

2Þ
n

T
ð1

2
g
Þ2

1
/

k
3=

2
1
2

1
f

/
t T

k
1=

2

Table II.
Relations between the

turbulent variables in the
k1a model
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A comparison between Tables I and II reveals that Table II includes more equalities.
This is due to the fact that equations (11)-(13) are not only a result of dimensional
reasoning, but they result from stochastic modelling and are verified experimentally
(Pope, 2000).

It was mentioned that the expression of the turbulent viscosity
nT ¼ 2/3(ScTctk

21 21(1 2 g n)) tends to equation (6) for large a/tT. It is also interesting
to notice that the expression tends to equation (6) also for large values of n. In the examined
flows, the factor (1 2 g n) deviates significantly from unity it the regions characterised by
high velocity gradients.

The k1a model
The k1a model is a development of the k1 model. The introduction of the a-equation
and the new expression of the turbulent viscosity are the structural changes performed
on the original model. The transport equations of k and 1 are rewritten with minor
changes from the standard version of the two-equation model (Launder and Spalding,
1974). The k1a model can be summarized in terms of equations as follows:

Dk

Dt
¼

›

›xi

nþ
nT

sk

� �
›k

›xi

� �
þ G 2 1 ð21Þ

D1

Dt
¼

›

›xi

nþ
nT

s1

� �
›1

›xi

� �
þ c1

1

k
G 2 c2

1 2

k
ð22Þ

DðkaÞ

Dt
¼

›

›xi

nþ
nT

sk

� �
›ðkaÞ

›xi

� �
þ k 2 a1 ð23Þ

nT ¼
2

3
ScTct

k 2

1
ð1 2 gnÞ ð24Þ

g ¼ exp 2
caa1

ctk
Pn21

i¼0 g
i

 !
ð25Þ

where G is the production term, which is a function of the rate of strain tensor Sij:

G ¼ 2ðnþ nTÞSijSij ð26Þ

The minor change introduced in the equations from the k1model is the addition of the
molecular viscosity to the turbulent viscosity. The molecular viscosity is generally
negligible in turbulent flows, but it can stabilize somewhat the numerical solution in
areas where the values of k and1 approach zero, often present in the computational
domain. This change is merely a measure to improve numerical behaviour and does
not mean that the model is intended for low-Reynolds-number flows.

Model constants
The k1a model includes seven empirical constants: ct, ca, c1, c2, sk, s1 and n. The
constants sk, s1, ca and n are chosen to give good agreement with the following
benchmark flows. The best set of constants found is:

sk ¼ 0:6 s1 ¼ 1n ¼ 16 ca ¼ 0:2 ð27Þ
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To estimate the model constants ct, c1 and c2, experimental data from decaying grid
turbulence and boundary layers. In the logarithmic-law region of the boundary layer,
the following relations hold:

1 ¼ G ¼
u3
t

ky
ð28Þ

k ¼
u2
t

0:3
ð29Þ

› �U

›y
¼

ut

ky
ð30Þ

where k ¼ 0:41 is the Von Karman constant, ut is the friction velocity and y is the
distance from the wall. From equations (24), (26), (28)-(30) therefore:

1 ¼ G ¼ nT
› �U

›y

� �2

¼
2

3
ScTct

k 2ð1 2 gnÞ

1

u2
t

k2y 2

)
2

3
ScTctð1 2 gnÞ ¼

k 2y 212

u2
tk

2
¼

k 2y 2

u2
t

0:32

u4
t

u6
t

k 2y 2
)

2

3
ScTctð1 2 gnÞ ¼ 0:09

ð31Þ

which implies that g n is constant and a/tT is either constant or sufficiently large (for
example, a/tt . 1.5 ¼ .g n , 0.01) in the log-law region. If a/tt is large, taking
ScT ¼ 0.7 gives ct < 0.19. If a/tt is constant then:

a ¼ c4tT ¼ c4ctkf=1 ð32Þ

Equation (23) in the log-law region of the boundary layer can be written:

0 ¼
›

›y

nT

sk

›ðkaÞ

›y

� �
þ k 2 a1 ð33Þ

Because the rate of change in the direction of the flow is negligible. Substituting
equations (15), (24), (28), (29), (31) and (32) into equation (33) gives:

c4 ¼ 7:4ScT 1 2 expð2cac4Þ
� � 1 2 k 2

ð0:3skÞ

	 
21

) c4 ¼ a=tT < 78 ð34Þ

which is a large value of a/tT. It follows that a/tT is large (.1.5) in the log-law region
of the boundary layer and ct ¼ 0.19.

In decaying homogeneous turbulence equations (21) and (22) can be written:

dk

dt
¼ 21 ð35Þ

d1

dt
¼ 2c2

12

k
ð36Þ

and have solution (Pope, 2000):
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kðtÞ ¼ k0
t

t0

� �2m

; 1ðtÞ ¼ 10
t

t0

� �2ðmþ1Þ

; t0 ¼ m
k0

10
; m ¼

1

c2 2 1
ð37Þ

The experimental value of the decay exponent m is 1.30 (Mohamed and LaRue, 1990),
which corresponds to c2 ¼ 1.77.

Equation (22) in the log-law region of the boundary layer can be written:

0 ¼
›

›y

nT

s1

›1

›y

� �
þ ðc1 2 c2Þ

1 2

k
ð38Þ

(Because the rate of change in the direction of the flow is negligible and 1 ¼ G).
Substituting equations (24), (28), (29), (31) into equation (38) gives:

c1 ¼ c2 2
k2

0:3s1

¼ 1:21 ð39Þ

Benchmark flows simulation
Five different flows are simulated with the standard k1(Launder and Spalding, 1974)
and the k1a models. In order to assess the influence of the empirical constants on the
performance of the models, the flows are also simulated with a modified k1 model,
where the constants c1, c2, sk and s1 have been substituted with the corresponding
values from the k1a model.

The first three flows are simulated by means of the commercial finite-volume solver
Fluent 6.1.18. The software includes a default implementation of the standard k1
model, but its source code is not available to the user. Therefore, in order to avoid any
differences in the numerical implementation of the k1 and k1a model, both models are
written as user-defined functions. A comparison between the default k1 and the
user-defined k1 shows negligible differences. The SIMPLE pressure-velocity coupling
algorithm and second order accurate discretization are applied. The fourth and fifth
flows are modelled by means of simplified transport equations. The simulation is
therefore performed with a different solver, further specified in Section 11.4.

Flow over a backward-facing step
The computational domain for the simulation of the experiment of Adams and Eaton
(1988) is shown in Figure 2.

The grid is made of square cells of side 2 mm (the height of the step is H ¼ 38 mm).
Adams and Eaton (1988) provide the mean velocity profile at the inlet and specify that
the upstream flow behaves like a flat-plate boundary layer. Therefore, the boundary
conditions at the inlet are given to resemble a flat-plate boundary layer. The age of the
turbulence is taken to be a ¼ 2tT, in consideration of the reasoning on the log-law
region made in Section 10. Turbulence at the wall-adjacent cells is given by a wall

Figure 2.
Computational domain for
the experiment of Adams
and Eaton (1988)

4 H

6 H 20 H

5 H
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function suggested by Jones (1994); production and dissipation rates are assumed to be
equal and given by:

G ¼ 1 ¼
ð0:3kÞ3=2

ky
ð40Þ

where y is the distance between the cell centre and the wall. The 1-equation is not
solved at the wall-adjacent cells; instead the value of 1 is given by equation The
k-equation is solved at the wall-adjacent cells and a zero-gradient boundary condition
is specified at the walls. The effective viscosity at the centre of the wall-adjacent cells is
given by:

neff ¼ nþ nT ¼
kð0:3kÞ1=2

lnð9:8y*Þ
y ð41Þ

where y* is a scaled distance from the wall:

y* ¼
ð0:3kÞ1=2

n
y ð42Þ

The a-equation is unchanged at the wall adjacent cells, and a zero-gradient boundary
condition is given at the walls. In most of the wall-adjacent cells 35 , y* , 60, except
for the reattachment zone, where y* reaches a maximum value of 100, and at the
concave corner of the step, where y * reaches a minimum value of 7. Around
the reattachment point and the concave corner, the wall function is not expected to be
accurate, since it is built on data from developed boundary layers. In these locations,
however, the velocities and the strain rates are relatively small, so that the inaccuracy
of the wall function should not affect significantly the outer flow field.

The dependence of the solution to the grid is checked by simulating the flow on a
grid of square cells with a side of 1 mm, except for the cells adjacent to the walls, which
have 2 mm sides in order to keep the centre of the cell in the log-law layer (the grid is
unstructured). The solutions from the two grids present negligible differences. The
experimental and computed mean velocity fields are compared in Figures 3(a) and (b).

The standard k1and the k1a models predict very similar results (the two curves
almost coincide), which agree very well with the measured velocities, except in the
vicinity of the reattachment point. The modified k1 model is significantly less accurate.

Figure 3.
(a) and (b) Computed and
measured mean velocities
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The distance between the step and the reattachment point is underpredicted by all
models as shown in Table III.

The discrepancy around the reattachment point might be due to the mentioned
inaccuracy of the wall function in this area. Considering this and the very good
agreement obtained in the remaining part of the domain, it might be argued whether
the position of the reattachment point is a significant indicator of the quality of the
turbulence model or of the wall function.

Axisymmetric jet
A schematic picture of the domain for the simulation of the axisymmetric,
momentum-conserving jet measured by Hussein et al. (1994) is shown in Figure 4.

The room surrounding the jet and the equipment has a square section and therefore
is not axisymmetrical. However, the distance of the room walls from the measured part
of the jet is so large that the room can be modelled as cylindrical with good
approximation. The radius of the cylinder is such that the cross section of the modelled
room is equal to that of the actual room. The computational grid in this case is
unstructured, with higher node density in the vicinity of the nozzle. The number of
cells employed is about 190,000 and grid independence was checked by further
increasing grid density by a factor 4 (dividing each cell in four). The size of the cells
adjacent to the room wall is suitable for the application of the wall function, but the size
of the cells adjacent to the nozzle wall is too small for the wall function to be applied.
Detailed models of turbulence next to walls are available, which can describe
turbulence in the viscous wall region. One such model, denominated “enhanced wall
treatment” is implemented in the software used (Fluent Inc., 2003). The use of the
default enhanced wall treatment is simple, but the implementation of such model by
the user is overly laborious, especially in consideration of the fact that the flow in
question is a typical free shear flow, i.e. a flow where the influence of the walls is
unimportant. Therefore, rather than implementing the enhanced wall treatment in the
user-defined turbulence models, a comparison was made to assess whether a simplified
approach could be used. The comparison is between two simulations of the flow
performed with the standard k1a in the first one, the default implementation of the
enhanced wall treatment is used, in the second one a simplified treatment of turbulence

Meas. SD k1 k1a Mod. k1

6.6 5 5 4.3

Note: Measured and computed distances between the step and the reattachment pointTable III.

Figure 4.
Computational domain
(not in scale)

axis
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is applied at the nozzle-wall-adjacent cells. The simplified treatment consists of using a
zero-gradient boundary condition for k and 1 and setting the effective viscosity equal to
the molecular viscosity at the nozzle-wall-adjacent cells. The comparison shows
that the choice of the wall treatment have no detectable effect on the measured part
(and the main body) of the jet, and therefore the simplified treatment is used at the
nozzle-wall-adjacent cells in all the simulations discussed in the following.

For the inlet boundary condition, the value of k is given by Hussein et al. (1994). The
relative age and the characteristic length scale of the turbulence are assumed to be
a/tT ¼ 2 and ‘ or lT ¼ 0.07d, where d is the diameter of the nozzle. The relative age at
the inlet is set according to what is considered to be a reasonable value, since no
experimental data are available about this variable. Therefore, the sensitivity of the
solution to the inlet value of the relative age is analysed in the interval 0.5 # a/tT # 5
and it is found to be negligible. The insensitivity of the solution to this boundary
condition is expected because turbulent energy is mainly produced inside the
simulation domain. The flow of the third scalar (ka) from the inlet is therefore small
compared to its generation inside the domain. From a simulation setup point of view,
the insensitivity is desirable, because it implies that the value of a at the inlet does not
need to be specified accurately.

The measured and computed axial velocities are compared in Figures 5 and 6. The
measured and computed spreading rates in the interval 30 , x/d , 120 are reported
in Table IV.

The measured and computed turbulence intensities are shown in Figure 7. The
integral length scales were not measured by Hussein et al. (1994), but Wygnanski and
Fielder (1969) did so in an analogous axisymmetric jet. By considering non-dimensional
variables is therefore possible to compare the scales computed for the jet of Hussein et al.
(1994) with the ones measured by Wygnanski and Fielder (1969). Since, the relation
defining the length scale in the models is only a proportionality relation, a comparison
can only be made in terms of relative scales. This is done in Figure 8.

Figure 5.
Mean axial velocities
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Figure 6.
Mean axial velocities at
sections x/d ¼ 30, 60, 90,
120
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Figure 7.
Turbulence intensities at
sections x/d ¼ 60, 90, 120
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Meas. SD k1 k1a Mod. k1

0.094 0.118 0.095 0.098

Table V.
Measured and computed
spreading rates in the
planar jet flow
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All the figures and the table show that the results of the k1a model are in better
agreement with the experimental data than those of the standard k1model. Figure 6
shows that the k1a model predicts a slower approach to self-similarity than the
standard k1 model does. The results of the modified k1 model lay in between those of
the standard k1 and the k1a models.

Planar jet
The planar turbulent jet investigated by Gutmark and Wygnanski (1976) is simulated.
The computational grid used is unstructured, with higher node density in the vicinity
of the nozzle. The number of cells employed is about 130,000 and grid independence
was checked by further increasing grid density by a factor 4. The computational
domain is two-dimensional and plane-symmetrical across the jet.

Since, this is a free shear flow, the same simplified wall treatment is applied as in the
axisymmetric jet case. The same check is also made to verify that the wall treatment
does not affect the solution in the measured part of the jet.

For the inlet boundary condition, the value of k is given by Gutmark and
Wygnanski (1976). The relative age and the characteristic length scale of the
turbulence are assumed to be a/tT ¼ 2 and ‘ or lT ¼ 0.07d, where d is the diameter of
the nozzle. Also in this case the relative age at the inlet is set according to what is
considered to be a reasonable value and the sensitivity of the solution to this boundary
condition is found to be negligible in the interval 0.5 # a/tT # 5.

Comparisons between measurements and computations are shown in Figures 9-13.
The measured and computed spreading rates in the interval 65 , x/d , 118 are
reported in Table V.

In Figure 9, the modified k1 model gives a better prediction than the standard k1
and the k1a models predictions, which are equivalent. In Figures 10 and 11 the
predictions of the k1a and the modified k1 models are slightly superior to those of
the standard k1 model. In Figure 12 the k1 model performs somewhat better than the
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k1a and the modified k1 models and in Figure 13 the models are equivalent. Within the
measurement accuracy, the spread rate is equally well predicted by the models.

It is interesting to notice that in this jet the k1a model approaches self-similarity
faster than the k1model. Gutmark and Wygnanski (1976) state that: “The approach to
self-preservation in a two-dimensional jet . . . occurs much earlier than in an
axisymmetric jet . . . ” (earlier in terms of x/d ). Figures 6, 7, 10 and 12 show that k1a
model predicts this trend while the k1 calculates the opposite behaviour.

Figure 9.
Mean x-velocities on the
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Figure 10.
Mean x-velocities across
the jet, at sections
x/d ¼ 65, 76, 88, 103, 118

1

0.8

0.6

0.4

0.2

0

U
/U

C

0 0.05 0.1 0.15 0.2 0.25
y/(x–x0)

65d
76d
88d
103d
118d
std ke
mod ke
kea

HFF
17,2

156



Nearly, homogeneous turbulent shear flow
In a nearly homogeneous shear flow, such as the ones described by Tavoularis and
Corrsin (1981) and by Tavoularis and Karnik (1981) equations (21)-(25) can be
approximated as:

U 1
›k

›x1
¼ cm

k 2

1
ð1 2 gnÞ

›U 1

›x2

� �2

21 ð43Þ

U 1
›1

›x1
¼ c1

1

k
cm

k 2

1
ð1 2 gnÞ

›U 1

›x2

� �2

2c2
1 2

k
ð44Þ

Figure 11.
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U 1
›ðkaÞ

›x1
¼ k 2 a1 ð45Þ

g ¼ exp 2
caa1

ctk
Pn21

i¼0 g
i

 !
ð46Þ

where U1 is the mean velocity in the flow direction. This system of equations can be
solved by means of a differential equation system solver, available for example in the
commercial software Matlab 6.5, which was used in the present work to simulate the
shear flow of Tavoularis and Corrsin (1981) and the first one (Case A) in Tavoularis
and Karnik (1981).

The simulation results are shown in Figures 14-17.
The dissipation rate was estimated from the experimental data according to

Tavoularis and Corrsin (1981). Figures 14-16 show that the predictions of the k1a
model are in better agreement with the experimental data than those of the k1 model. In
Figure 17, the k1 model better predicts the development of the length scales than the
k1a. The modified k1 model gives significantly inferior results in all figures.

Regarding the boundary condition at the inlet, the k1a model has the advantage of
an additional variable, or “degree of freedom” which allows the specification of a
correct Reynolds stress, as shown in Figure 16.

Discussion
In the benchmark flows that are examined, the k1a model always provides a better or
equivalent prediction of the mean flow field. Most notably the k1a model predicts well
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the velocity profiles both in the axisymmetric and in the planar jet, significantly
reducing the round-jet/plane-jet anomaly. Also the qualitative approach to
self-similarity in the axisymmetric and plane jets described by Gutmark and
Wygnanski (1976) is predicted by the k1a model, while the opposite behaviour is
computed with the standard k1 model.

Figure 14.
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The computed turbulence intensities are also computed more accurately by the k1a
model than by the standard k1 model, with the exception of the profile across the
planar jet. An important difference regarding turbulence intensities is the value of the
empirical constant c2. This constant corresponds to the decay exponent (equation (37))
in grid turbulence, which has been studied extensively. Mohamed and LaRue (1990)
show that most of the data can be reinterpreted to give little scatter around the value

Figure 16.
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m ¼ 1.3. It is therefore difficult to justify the value c2 ¼ 1:92 (m ¼ 1:09) used in the
standard k1 model, which lies outside of the experimental observed range (Pope, 2000).
In other words it can be stated that the standard k1 model does not represent correctly
the fundamental power-law decay in grid turbulence, while the k1a model does.

Also the modified version of the k1 model, where the empirical constants have been
substituted with the respective ones of the k1a model, represents correctly the power
law decay. In the modified k1 furthermore, also the round-jet/plane-jet anomaly is
significantly reduced. The performance of the modified k1 model, however, is
significantly inferior to those of the other models in the backward-facing step flow and
in the homogeneous shear flows. These results show that the modification of the
empirical constants can improve the performance of the k1 model for certain flows, but
it will inevitably worsen its performance for other flows, therefore not improving the
generality of the model.

The length scales of turbulence are computed by the models only in the form of
proportionality relations and therefore they are compared only in relative terms. The
k1a model better reproduces the relative scales in the axisymmetric jet case, while the
standard k1 model predicts a better trend in the shear flow case.

Regarding the characteristic time scales of turbulence tT, it should be noticed that
the expression of tT in the k1a model is not a proportionality relation as in the k1
model, but it is an equality. This feature of the k1a model is a substantial advantage,
since it allows a direct comparison between the computed and the measured integral
time scales (where available). A correct estimation of the time scales is especially
important in reacting flows where the mixing time of the chemical species limits the
progress of reaction.

A thorough study of the computational requirements was not performed because the
focus of the work has been on the formulation and calibration of the model and on the
accuracy of its results, so that the implementations have not been optimised numerically.
It can be stated, however, that in the performed calculations the computational time
required by the two models has been of the same order of magnitude.

Conclusions
It is argued that the age of turbulent energy a is a useful variable for characterising
turbulence, and a method for computing a is proposed.

Two hypotheses are formulated. The first one is that the characteristic scales of
turbulence are decreasing functions of a. The second one is that the effect of correlation
on turbulent viscosity can be expressed as a function of a in analogy with the
dispersion coefficient of a particle in a turbulent flow. Expressions for the turbulent
viscosity and the characteristic scales are therefore proposed and they are integrated in
a previous turbulence model. The resulting three-equations model gives generally
better results than the original two-equations one. Most notably the k1a model
improves the prediction of the velocity profiles both in the axisymmetric and in the
planar jet, eliminating the round-jet/plane-jet anomaly observed in the k1 model.
Furthermore, the model represents correctly the power-law decay behind grids gives a
better estimation of the Reynolds stress in the homogeneous shear flow, both of which
are miscalculated by the k1 model.

These results support the hypotheses made and therefore are an encouragement to
continue researching in this direction.
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Appendix. Derivation of the a equation for a generic transported scalar
The derivation is presented here for a generic transported scalar z in a turbulent flow. The
derivation is valid for scalars that diffuse due only to stochastic motion, i.e. where diffusion
driven by enthalpy of mixing or other similar forces is negligible. The derivation is kept here as
concise as possible. A more thorough one is presented in (Ghirelli and Leckner (2004)).

Given a spatial domain V the age a of the transported scalar z is defined as the time that z has
spent inside V. For simplicity, it will be assumed in the following that V coincides with the
computational domain. If z were a chemical species one could imagine to follow each molecule
and to keep track of the time they spent inside V. If z were the turbulent energy, the concept is
less intuitive, but nonetheless mathematically correct since k is represented as a scalar which is
transported just as a chemical species.
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The scalar u is defined as follows:

u ; za: ðA1Þ

u can be interpreted as an extensive variable corresponding to the intensive variable a. Since, z is
transported by the flow, and a is a property of z, a transport equation can be written for u. The
equation represents the balance of u over an infinitesimal control volume, as the classical
transport equations in fluid mechanics. As such it includes an accumulation term, a convection
one, a diffusion one, and a source term:

Du

Dt
¼

›Ju;i
›xi

þ su ðA2Þ

where J u;i is the diffusive flux of u in direction xi and su is its source term. The left-hand side of
the equation does not need much comment. The diffusion and source terms are less obvious. The
source term will be considered first:

su ¼ z 2 sCa ðA3Þ

where sC is the sink term due to consumption of z (e.g. consumption of a species due to chemical
reaction or consumption of k due to viscous dissipation). The first term on the right hand side of
equation (A3) represents the source of u due to the fact that the age of z grows with time. Since, a
increases by one unit age per unit time, u increases as z *1 ¼ z. This term is present only inside
V. The second term on the right hand side of equation (A3) represents the sink of u due to
consumption of z. For example, when molecules of a species of age a disappear at a rate sC due to
a chemical reaction, u disappears at a rate sCa. Analogously, when turbulence of age a
disappears at a rate 1, u disappears at a rate 1a. There is no source term corresponding to
production of z in equation (A3) because at the moment z is produced, its residence time is zero.
Production of z will therefore increase z but not u resulting in a decrease of a.

The expression of the diffusive term in equation (A2) can be deduced by means of the
hypothetical experiment described in the following. For this experiment, the scalar z is first
defined as the sum of the concentrations of various species. It is later shown that also a more
general definition of z can also be used:

z ¼
X

j
Xj ðA4Þ

where j is an integer index and Xj is the concentration of species j. The experiment consists of
injecting in a turbulent flow one pulse of each species at discrete times. aj is the time that has
elapsed since the pulse of species j was injected. aj is clearly a function of time only.

Applying the Boussinesq hypothesis and making the assumption that molecular diffusion is
negligible compared to turbulent diffusion, the diffusive flux of species j in direction x1 can be
written:

J j;1 ¼ 2DT
›Xj

›x1
ðA5Þ

The diffusive flux of u in direction x1 can then be expressed as:

J u;1 ¼
X

j
ðJ j;1ajÞ ¼ 2

X
j
ðDT

›Xj

›x1
ajÞ ¼ 2DT

›

›x1
ð
X

j
XjajÞ ðA6Þ

Because aj is not a function of x1. Furthermore:
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J u;1 ¼ 2DT
›

›x1
ð
X

j
XjajÞ ¼ 2DT

›

›x1
ð
X

j
Xj

P
jX jajP

jX j

Þ ¼ 2DT
›

›x1
ðz �aÞ ¼ 2DT

›u

›x1
ðA7Þ

where the overbar denotes an average. (In equation (A1) the average is not explicitly stated, but it
is understood, because a is regarded as a continuous property. As such, it is the average age of
the molecules inside the control volume.)

In the above discussion, several species Xj have been used to provide a clear picture of the
hypothetical experiment. By using a different species at every pulse, the various fractions of z
have been “marked” so that they can be followed. The transport of the various species, however,
takes place independently of the nature of the species, since it was assumed that molecular
diffusion is negligible. In other words, if the same species had been used at every pulse, the result
would be the same, even if in practice one would not be able to keep track of which molecules
were injected at a certain time. Similarly, the reasoning can be applied to any transported scalar z
that can be divided in arbitrary fractions that diffuse according to the same expression as the
whole z. (This would not be the possible, for example, if the various species in the hypothetical
experiment were characterized by different diffusivities Dj, in which case equations (A6) and
(A7) could not be written. Also in the case that z represented a species that diffuses mainly due to
enthalpy of mixing, it would not be correct to divide z in arbitrary fractions and assume that they
should diffuse according to the same law as the whole z. This is explained in more detail by
Ghirelli and Leckner (2004).)

Regarding diffusion of turbulent kinetic energy k, it is reasonable to assume that all fractions
of k (for example, energy at all the frequencies) are transported according to the same expression,
analogous to equation (A5).

In conclusion, the hypothetical experiment shows that the diffusive flux of u can be expressed
according to equation (A7). Therefore, the equation of transport of the age of z can be written as:

DðzaÞ

Dt
¼

›

›xi

Dz
›ðzaÞ

›xi

� �
þ z 2 asC ðA8Þ

where Dz is the diffusivity of z. In the k1a model presented above, the diffusivity of k is taken to
be the sum of the molecular and turbulent viscosities.
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